An Efficient Kernel Learning Algorithm for Semisupervised Regression Problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems

In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...

متن کامل

Efficient large margin semisupervised learning

In classification, semisupervised learning involves a large amount of unlabeled data with only a small number of labeled data. This imposes great challenge in that the class probability given input can not be well estimated through labeled data alone. To enhance predictability of classification, this article introduces a large margin semisupervised learning method constructing an efficient loss...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

Efficient Online Learning for Large-Scale Sparse Kernel Logistic Regression

In this paper, we study the problem of large-scale Kernel Logistic Regression (KLR). A straightforward approach is to apply stochastic approximation to KLR. We refer to this approach as non-conservative online learning algorithm because it updates the kernel classifier after every received training example, leading to a dense classifier. To improve the sparsity of the KLR classifier, we propose...

متن کامل

An efficient approach for solving layout problems

This paper offers an approach that could be useful for diverse types of layout problems or even area allocation problems. By this approach there is no need to large number of discrete variables and only by few continues variables large-scale layout problems could be solved in polynomial time. This is resulted from dividing area into discrete and continuous dimensions. Also defining decision var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2015

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2015/451947